Structure and Properties of Carbon Based Nanocomposite Films #### G. Radnóczi radnoczi@mfa.kfki.hu Research Institute for Technical Physics and Materials Science, 1525 Budapest, P.O.Box 49. Hungary | maintaining the data needed, and c
including suggestions for reducing | lection of information is estimated to
completing and reviewing the collect
this burden, to Washington Headqu
uld be aware that notwithstanding an
DMB control number. | ion of information. Send comments arters Services, Directorate for Info | regarding this burden estimate
rmation Operations and Reports | or any other aspect of the s, 1215 Jefferson Davis | nis collection of information,
Highway, Suite 1204, Arlington | | |---|--|---|--|--|--|--| | 1. REPORT DATE 18 MAR 2004 | | 2. REPORT TYPE N/A | | 3. DATES COVERED - | | | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT NUMBER | | | | Structure and Properties of Carbon Based Nanocomposite Films | | | | 5b. GRANT NUMBER | | | | | | | | 5c. PROGRAM ELEMENT NUMBER | | | | 6. AUTHOR(S) | | | | 5d. PROJECT NUMBER | | | | | | | | 5e. TASK NUMBER | | | | | | | | 5f. WORK UNIT NUMBER | | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Research Institute for Technical Physics and Materials Science, 1525 Budapest, P.O.Box 49. Hungary | | | | 8. PERFORMING ORGANIZATION
REPORT NUMBER | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | | 12. DISTRIBUTION/AVAIL Approved for publ | LABILITY STATEMENT
ic release, distributi | on unlimited | | | | | | 13. SUPPLEMENTARY NO See also ADM0016 | otes
72., The original do | cument contains col | or images. | | | | | 14. ABSTRACT | | | | | | | | 15. SUBJECT TERMS | | | | | | | | 16. SECURITY CLASSIFIC | 17. LIMITATION OF
ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF | | | | | a. REPORT NATO/unclassified | b. ABSTRACT
unclassified | c. THIS PAGE
unclassified | UU | 52 | RESPONSIBLE PERSON | | **Report Documentation Page** Form Approved OMB No. 0704-0188 #### Co-workers Gy. J. Kovács, G. Sáfrán, O. Geszti, K. Sedlackova, Zs. Czigány T. Újvári*, I. Bertóti*, Research Institute for Technical Physics and Materials Science, H 1525 Budapest, P.O. Box 49, Hungary *Research Laboratory of Materials and Environmental Chemistry, Chemical Research Center, H-1525 Budapest, P.O. Box 17, Hungary #### 1. INTRODUCTION The theoretically predicted superhard β -C₃N₄ has not yet been experimentally realized, however, the different CN_x structures and their applications is a reality. Presently the research is focused on *fullerene-like* CN_x thin films. They are modestly hard (max. 18-20 GPa) compared to nowadays' superhard coatings, (30-40 GPa) and have a fairly high elastic modulus (130-200 GPa). The most interesting properties of fullerene-like films are their extreme elasticity (nearly 90% elastic recovery) and good wear resistance with a friction-coefficient similar to nonhydrogenated diamond-like carbon (DLC). In this talk the structure, morphology and the mechanical properties of d.c. magnetron sputtered nanocomposite films of carbon or CN_x matrix and nickel as dispersed component are investigated. Our main interest was the influence of the nickel on the structure of the C/CN_x matrix and its relation to nanohardness of the composite layers. Superhard coatings: 40 GPa Diamond: 70-100 GPa, Cubic BN: 50 GPa Nitride nanocomposites (e.g.) TiN in Si3N4): 50-100 GPa Electroplated Cr: 12 GPa TiN: 23-25 GPa TiCN, TiAlN, TiZrN: 33 GPa C/Cr: 27 GPa Nitride multilayers (TiN, VN, AlN, NbN, CrN): 35-50 GPa #### 2. EXPERIMENTAL: Sputtered films: CN_x and C (+ Ni) films were prepared at 30-800 °C on substrate temperature in (2-3)x10⁻³ mbar Ar-ban vagy N_2 -ben. Background pressure: 2×10^{-6} mbar. Nitrogen, Argon: 99.9999 % (V/V). Targets: high purity (99,5%) pyrolytic graphite. Substrates: oxidesed (100)Si, glass, NaCl #### Mechanical measurements Dynamic nano-hardness and friction coefficient were measured by a NanoTest 600 nano-mechanical tester (Micro Materials Ltd., UK). A Berkovich type indenter-head was applied for hardness measurements in depth control mode with a penetration depth of 50 nm. A 'Sharp Rockwell' head was used for friction tests with 1 micron/sec velocity and 3 mN load. #### 3. RESULTS A 'Sharp Rockwell' head was used for friction tests with 1 micron/sec velocity and 3 mN load. Roughness as the function of the deposition temperature #### The effect of substrate temperature on the ordering of carbon CNM11 (C in Ar, RT, SiO₂, NaCl) and CNM13 (C in Ar, 400°C, SiO₂) RT, C+N+Ni (C in Ar, RT, NaCl) CNM11 RT, C+N+Ni 10 nm CNM36, 120°C, 250 nm CNM30 200°C 230 nm 250 nm C+N+Ni CNM37 300°C, 300 nm 2 nm 2 nm > t d~ 2 nm 2 nm > t d~2-4 nm t=2-5 nm d ~10 nm 200°C, Si+SiO₂ substrate, C+Ni XP spectra of the C1s region of a C-Ni sample deposited at 280°C before and after Ar+ ion etching. C+Ni(30 at%) 800°C/SiO₂ substrate fcc Ni Graphite-like C CNM32, 600°C, B02355, B02357 C+N+Ni CNM 33 800°C E499 E505 - 1) Decrease of TiN grain size due to Si_3N_4 addition. - 2) Secondary nucleation of TiN, formation of ncTiN, sharp, thin phase boundaries. Deformation by GB sliding. - 3) Thick, deformable Si₃N₄ between TiN grains. Silicon Nitride Fraction (at%) Jörg Pattschneider, MRS Bulletin, March, 2003, p. 180 The essence of the above picture: nanohardness is determined by the morphology of the film. Compositional changes are not necessary, the deposition parameters and the induced by them self-organizational processes will lead to given morphologies, we observed in C/CNx-Ni films. Al-C films: separation of the components according to the thickness and deposition rate of the films. ## Formation mechanism of composit structures in co-deposited Al - C film: dependence of composition $C_{conc} < 0,2$: primary nucleation and growth of Al crystals *segregation of C by Al crystal growth, nucleation and growth of Al_4C_3 phase in BD layer on Al crystal surfaces, *polycrystalline Al structure with Al₄C₃ phase at GB-s $C_{conc} > 0.2$: primary nucleation and growth of Al_4C_3 phase • segregation of Al species: Al crystals dispersed in Al₄C₃ matrix Process induced segregation of co-depositing carbon species results in the formation of a surface covering layer on the growing In crystals Rounding of crystal shapes; repeated nucleation of In on the carbon layer covering completely the surface of In crystals (in-situ TEM experiment, T_s=75 °C J.F.Pócza et al., Japan JAP, Suppl. 2. Part 1, (1974) 525) **Problems**: to understand the mechanisms operative in the development of peculiar composite structures (e.g. nanocmposite, lamellar) in multicomponent thin films. Present work: dedicated experiments on two-component model system: codeposited Al and C. Cross section of Al films with 0 and ≈ 25 at% C, deposited at room temperature C ≈ 25 at% D. Bíró, A. Kovács, F. Misják, T. Szüts, P.B. Barna, Surface and Coatings Technology, in press. # Cross sectional images of codeposited Al-C films with thickness ($C_{conc} \approx 25$ at%) D. Bíró, A. Kovács, F. Misják, T. Szüts, P.B. Barna, Surface and Coatings Technology, in press. CNM32, 600°C, B02355, B02357 C+N+Ni CNM 33 800°C E499 E505 - 1) Decrease of TiN grain size due to Si_3N_4 addition. - 2) Secondary nucleation of TiN, formation of ncTiN, sharp, thin phase boundaries. Deformation by GB sliding. - 3) Thick, deformable Si₃N₄ between TiN grains. Silicon Nitride Fraction (at%) Jörg Pattschneider, MRS Bulletin, March, 2003, p. 180 2 nm 2 nm > t 2 nm > t t=2-5 nm $d\sim 2 \text{ nm}$ $d\sim 2-4 \text{ nm}$ $d\sim 10 \text{ nm}$ #### 4. Conclusions - -The major part (80-90 vol %) of the films is crystalline. On the basis of XPS and ED data, for films deposited below 400°C the hexagonal crystalline phase was assigned to Ni_3C , while above 400°C it is changing to fcc structured Ni, and NiC_x . - -The crystalline grains form a columnar morphology below 300°C which gradually changes to a globular one as the growth temperature increases. From 600°C a separation of Ni into a layer of large grains of fcc metallic phase was observed. - -The matrix of the films deposited between 20-200°C can be described as a 1-2 nm thick amorphous carbon/CNx, separating the crystalline columns of elongated Ni₃C grains. From 200°C, the C/CNx matrix gradually becomes graphitic-like and at least 2-5 nm thick layers appear around the crystalline grains. At higher temperatures the C/CN_x matrix becomes thicker and more ordered. - -Nanomechanical properties show a distinct dependence on the deposition temperature. Films deposited at 20-200°C posses the highest hardness up to 14 GPa. The lowest friction coefficient was measured for films deposited at 400-600°C. Generally, the CN_x-Ni films have higher hardness and elastic modulus but lower coefficient of friction than their C-Ni counterpart films probably due to nitrogen cross-links between graphitic layers. The decreasing of the hardness at 300oC is most probably due to the thickening of C/CNx matrix between the crystalline grains ٠. #### **ACKNOWLEDGMENT** This work was supported by the Hungarian National Science Foundation (OTKA T-30424 and T-043359) and also by the EU under the contract No. ICAI-CT-2000-70029 and New Fullerene-like Materials: HPRN-CT-2002-00209 #### THANK YOU FOR THE ATTENTION radnoczi@mfa.kfki.hu #### 4. CONCLUSIONS C-Ni and CN_x-Ni films of 10-30 and 200-300 nm thickness were deposited by d.c. magnetron sputtering onto SiO₂ and NaCl subtrates, between 20 and 800 °C substrate-temperatures. The nanocomposite is composed from mostly fullerene-like matrix of C or CN_x and a crystalline phase undergoing a phase change at 400 °C growth temperature from hexagonal Ni/Ni₃C to fcc Ni phase. Generally, the CN_x-Ni films have higher hardness and elastic modulus than C-Ni films. The films deposited at 20-200 °C can be described as columnar, fine structures of elongated grains of hexagonal Ni/Ni₃C embedded into an amorphous or partly ordered to graphene sheets matrix of uniform (1-2 nm) thickness between the crystalline grains. These films have hardness of 9-14 GPa and elastic modulus of 100-130 GPa. Above 200 °C Carbon and CN_x become more fullerene-like. With increasing substrate temperature the thickness of C/CN_x matrix between the fcc Ni crystallites becomes nonuniform (2-20 nm thick). The crystalline (fcc) Ni becomes globular with a broad size distribution ranging from 5 to 100 nm in diameter. The films get softer, hardness goes down to 2-6 GPa the elastic modulus being between 60-100 GPa. The changes in the hardness can be prescribed partly to the differences of the moduli of the obtained material as well as to the morphology of the film. The columnar fine grain structures and uniformly thin matrix walls together with the higher values of the moduli result in higher hardness values.